Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Accurate and real-time gait analysis is essential for enhancing performance and reducing injury risks in treadmill running. In this paper, we introduce VibRun, an unobtrusive gait analysis system that estimates key physiological metrics, such as cadence, ground contact time, stride time, center of pressure, and plantar pressure distribution, through footstep vibrations captured by low-cost treadmill-mounted sensors. Leveraging advanced multi-task transformer models, our system offers a robust, real-time solution to monitor and analyze running biomechanics without requiring intrusive wearable devices. This approach enables seamless integration into virtual sports, gaming platforms, and immersive exercise environments, enhancing the running experience by providing personalized feedback. By offering precise biomechanical insights in real-time, VibRun paves the way for future applications in virtual sports, gamified fitness, and interactive training programs, empowering users to engage more effectively in their training sessions while improving overall performance and reducing injury risks. Extensive evaluations with 17 participants across varied treadmill running scenarios demonstrate VibRun's accuracy in real-time gait analysis. For instance, VibRun achieves a mean error of 28.8 ms in ground contact time and a distance of 13.66 mm in the center of pressure, among other measured metrics, highlighting its precise performance across multiple gait parameters.more » « lessFree, publicly-accessible full text available September 3, 2026
-
As the metal additive manufacturing (AM) field evolves with an increasing demand for highly complex and customizable products, there is a critical need to close the gap in productivity between metal AM and traditional manufacturing (TM) processes such as continuous casting, machining, etc., designed for mass production. This paper presents the development of the scalable and expeditious additive manufacturing (SEAM) process, which hybridizes binder jet printing and stereolithography principles, and capitalizes on their advantages to improve productivity. The proposed SEAM process was applied to stainless steel 420 (SS420) and the processing conditions (green part printing, debinding, and sintering) were optimized. Finally, an SS420 turbine fabricated using these conditions successfully reached a relative density of 99.7%. The SEAM process is not only suitable for a high-volume production environment but is also capable of fabricating components with excellent accuracy and resolution. Once fully developed, the process is well-suited to bridge the productivity gap between metal AM and TM processes, making it an attractive candidate for further development and future commercialization as a feasible solution to high-volume production AM.more » « less
An official website of the United States government
